Welcome to Apache Open Climate Workbench’s documentation!¶
Contents:
Dataset Module¶
Bounds¶
- class dataset.Bounds(lat_min, lat_max, lon_min, lon_max, start, end)¶
Container for holding spatial and temporal bounds information.
Certain operations require valid bounding information to be present for correct functioning. Bounds guarantees that a function receives well formed information without the need to do the validation manually.
Spatial and temporal bounds must follow the following guidelines.
- Latitude values must be in the range [-90, 90]
- Longitude values must be in the range [-180, 180]
- Lat/Lon Min values must be less than the corresponding Lat/Lon Max values.
- Temporal bounds must a valid datetime object
Default Bounds constructor
Parameters: Raises: ValueError
Dataset¶
- class dataset.Dataset(lats, lons, times, values, variable=None, name='')¶
Container for a dataset’s attributes and data.
Default Dataset constructor
Parameters: - lats (numpy array) – One dimensional numpy array of unique latitude values.
- lons (numpy array) – One dimensional numpy array of unique longitude values.
- times (numpy array) – One dimensional numpy array of unique python datetime objects.
- values (numpy array) – Three dimensional numpy array of parameter values with shape [timesLength, latsLength, lonsLength].
- variable (string) – Name of the value variable.
- name – An optional string name for the Dataset.
Raises: ValueError
- spatial_boundaries()¶
Calculate the spatial boundaries.
Returns: The Dataset’s bounding latitude and longitude values as a tuple in the form (min_lat, max_lat, min_lon, max_lon) Return type: (float, float, float, float)
- spatial_resolution()¶
Calculate the latitudinal and longitudinal spatial resolution.
Warning
This only works with properly gridded data.
Returns: The Dataset’s latitudinal and longitudinal spatial resolution as a tuple of the form (lat_resolution, lon_resolution). Return type: (float, float)
- temporal_resolution()¶
Calculate the temporal resolution.
Raises ValueError: If timedelta.days as calculated from the sorted list of times is an unrecognized value a ValueError is raised. Returns: The temporal resolution. Return type: string
- time_range()¶
Calculate the temporal range
Returns: The start and end date of the Dataset’s temporal range as a tuple in the form (start_time, end_time). Return type: (datetime, datetime)
Dataset Processor Module¶
Evaluation Module¶
Metrics Module¶
UnaryMetric¶
- class metrics.UnaryMetric¶
Abstract Base Class from which all unary metrics inherit.
x.__init__(...) initializes x; see help(type(x)) for signature
- run(target_dataset)¶
Run the metric for a given target dataset.
Parameters: target_dataset – The dataset on which the current metric will be run. Returns: The result of evaluating the metric on the target_dataset.
BinaryMetric¶
- class metrics.BinaryMetric¶
Abstract Base Class from which all binary metrics inherit.
x.__init__(...) initializes x; see help(type(x)) for signature
- run(ref_dataset, target_dataset)¶
Run the metric for the given reference and target datasets.
Parameters: - ref_dataset (Dataset) – The Dataset to use as the reference dataset when running the evaluation.
- target_dataset – The Dataset to use as the target dataset when running the evaluation.
Returns: The result of evaluation the metric on the reference and target dataset.
Bias¶
- class metrics.Bias¶
Calculate the bias between a reference and target dataset.
x.__init__(...) initializes x; see help(type(x)) for signature
- run(ref_dataset, target_dataset)¶
Calculate the bias between a reference and target dataset.
Note
Overrides BinaryMetric.run()
Parameters: - ref_dataset (Dataset.) – The reference dataset to use in this metric run.
- target_dataset (Dataset.) – The target dataset to evaluate against the reference dataset in this metric run.
Returns: The difference between the reference and target datasets.
Return type: Numpy Array
TemporalStdDev¶
- class metrics.TemporalStdDev¶
Calculate the standard deviation over the time.
x.__init__(...) initializes x; see help(type(x)) for signature
- run(target_dataset)¶
Calculate the temporal std. dev. for a datasets.
Note
Overrides UnaryMetric.run()
Parameters: target_dataset (Dataset) – The target_dataset on which to calculate the temporal standard deviation. Returns: The temporal standard deviation of the target dataset Return type: Numpy Array